

OPTIMIZING PERFORMANCE

THE MICROBIOME-MITOCHONDRIA CONNECTION

SHAWN MANSKE, ND

OBJECTIVES

- Review the role of the microbiome in affecting overall health
- Understand the interactions between the mitochondria and microbial metabolites
- Explore how exercise influences the microbiome and mitochondrial function and, vice versa
- Discuss interventions that target the microbiome and mitochondria, that can optimize exercise and sports performance

OUR MICROBIOME

THE PASSENGERS AS CO-PILOTS

Biocidin Botanicals-

THE MICROBIOME

- The microbiome describes the microorganisms coexisting in or on our bodies bacteria, fungi and yeasts, viruses, archaea, and parasites.
- Estimated that 80-95% reside in the gastrointestinal tract, while the remaining can be found in the lungs and respiratory tract; bladder and urinary tract; fluid of the eyes; and on the skin.
- Trillions co-exist with us in numbers on par with our own human cells approximately 37 trillion.
- Microbial genes total 2-3 million; human genes 23,000 (vast microbial gene products).
- Microorganism types include commensals, non-commensals, opportunistic, and pathogenic.

Solid Foods Environmental Exposures?

MICROBIOME DEVELOPMENT

INFLUENCES ON THE MICROBIOME

DIET INFLUENCES THE MICROBIOME TO AFFECT METABOLISM

https://www.nature.com/articles/s41579-020-0433-9

©2023 Biocidin Botanicals

MICROBIAL METABOLITES THAT ALTER METABOLISM

- Short Chain Fatty Acids (SCFA)
- 2⁰ Bile Acids
- Lipopolysaccharide (LPS)
- Trimethylamine (TMA)
- Branched Chain Amino Acids (BCAA)
- N-acyl amide
- Bacterial synthesized neurotransmitters (Trps), ex:serotonin

MICROBIAL METABOLITES ALTER METABOLISM

BACTERIAL SHORT CHAIN FATTY ACID PRODUCTION

SCFAS AND INTESTINAL BARRIER FUNCTION

DYSBIOSIS AND DISEASE

MICROBIOME DISTURBANCES IN DISEASE

©2023 Biocidin Botanicals

Biocidin Botanicals⁻

MITOCHONDRIA CELLULAR ENERGY PRODUCERS

THE CELL AND MITOCHONDRIA

https://commons.wikimedia.org/wiki/File:Animal_mitochondrion_diagram_en_%28edit%29.svg

MITOCHONDRIA: WHAT DO THEY DO?

PRODUCTION OF ATP – CELLULAR ENERGY

Perhaps the most well-known role of mitochondria is the production of ATP, the energy currency of cells.

CALCIUM HOMEOSTASIS

Mitochondrial calcium exchange is the flow of calcium in and out of a cell's mitochondria, a process important in metabolic regulation and cell death.

REGULATION OF INNATE IMMUNITY

Innate immunity is the inborn system that recognizes and responds to infection by pathogens, providing immediate, non-specific defence.

PROGRAMMED CELL DEATH

Apoptosis is the highly controlled process of programmed cell death, necessary during intrauterine development, mopping up damaged cells, and maintaining cell numbers.

STEM CELL REGULATION

Mitochondria are thought to play crucial roles in the maintenance of pluripotency, differentiation, and reprogramming of induced pluripotent stem cells.

MITOCHONDRIAL DYSFUNCTION

DYSFUNCTION WITHIN THE MITOCHONDRIA LINKED TO DISEASE

When mitochondria stop functioning, the cell they are in is starved of energy. Depending on the type of cell, symptoms can vary widely.

As a general rule, cells that need the largest amounts of energy, such as heart muscle cells and nerves, are affected the most by faulty mitochondria.

FREE RADICAL THEORY OF AGING

Theory states that reactive oxygen species (ROS) are produced in mitochondria as a byproduct of energy production. These highly charged particles damage DNA, fats, and proteins.

Due to the damage caused by ROS, the functional parts of mitochondria are damaged. When the mitochondria can no longer function optimally, further ROS are produced, accelerating cellular damage and contributing to the aging process.

ROS-INDUCED MITOCHONDRIAL DYSFUNCTION

©2023 Biocidin Botanicals

MICROBIOTA-MITOCHONDRIAL COMMUNICATION

EXERCISE ASSOCIATED MITOCHONDRIAL ROS PRODUCTION

- Exercise is widely accepted as a promising therapeutic strategy for human health, as it modulates specific metabolic signaling pathways.
- Physical exercise directly benefits skeletal muscle metabolism and systemic energy homeostasis.
- Mitochondria are vital for exercise and performance because of their role in ATP production and β-oxidation of fatty acids.
- Exercise also affects genes associated with glucose and lipid metabolism which provides fuel for mitochondrial energy production.
- Exercise has direct impacts on the microbiome

EXERCISE AND MICROBIOME ADAPTATIONS

- → Microbiome composition was different based on
 - Type of sport
 - Number of sports
 - Level of activity
- → Endurance sports
- → Compared with sedentary

DISCIPLINES AND SEDENTARY ADULTS EXPOSED TO TRAINING				
Cyclists	Cyclists and rugby players	Cyclists and sedentary adults exposed to exercise		
Cubacterium Methanobrevibacter Activities of interest: Branched aminoacid and carbohydrate metabolism	 Akkermansia* Activities of interest: Mucin-degrading activity 	 <i>Ruminococcaceae</i>* <i>Ruminococcus</i>* Activities of interest: Branched aminoacid and carbohydrate metabolism 		
Endurance athletes and rowers	Marathoners	Rowers		
Firmicutes Activities of interest: Galactose metabolism, D- alanine, histidine and primary bile acid biosynthesis, Tricarballylic, 3-metylglutaconic, vanillylmandelic, quinolinic and kynurenic acids and thymine metabolism	 <i>Veillonella</i>* Activities of interest: Lactate metabolism 	 □Actinobacteria □Bacteroidetes □Clostridiales □Dorea □Proteobacteria □Roseburia □Subdoligranulum • Activities of interest: □Branched aminoacid and carbohydrate metabolism, ATP metabolism, sugar transport systems, butyrate producers (Roseburia, Subdoligranulum), insulin sensitivity (Dorea) 		
Rugby players	Multiple sports	Multiple sports and sedentary adults		
Erysipelotrichaceae* Activities of interest: Phenylacetylglutamine derived from phenylalanine metabolism, creatinine kinase and bilirubin metabolism	Anaerostipes Bacteroides Bifidobacterium Clostridium Faecalibacterium* Lachnospiraceae* Lactobacillus Streptococcus Activities of interest: cis-aconitate, succinic acid, lactate and creatinine metabolism, butyrate producers (Anaerostipes, Faecalibacterium, Lachnospiraceae), sugar alcohol fermentation (Streptococcus)	 Prevotella* Activities of interest: L-lysine, branched chain amino acid and carbohydrate metabolism pathways 		
Sedentary adults				

□Coprococcus* □Parasutterella*

CHARACTERISTIC CLADES OF THE MICROBIOTA OF ATHLETES ACROSS DIFFERENT DISCIPLINES AND SEDENTARY ADULTS EXPOSED TO TRAINING

EXERCISE-INDUCED MICROBIAL CHANGES & ATHLETIC BENEFITS

INTERPLAY OF EXERKINES AND MICROBIOTA-DERIVED METABOLITES

INTERPLAY OF EXERKINES AND MICROBIOTA-DERIVED METABOLITES

Review

Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential

o 1 - 1 - 1 2		-
Saba Imdad ^{1,2}	"The three-way interaction of the gut microbiome, mitochondria, and	
Int. J. Mol. Sci. 2022,	exercise intervention can coherently induce a greater impact on the	of 27
2 <u></u>	remodelling of the human physiological processes for a balanced and	
	healthy outcome. The appropriate contribution of these factors for	
	human health is evident. Each component has its interdependency on	ven- rical
	the other, through which they each modulate one another in a dynamic	tors
	and complex manner."	plex

merpiay or exercises and microbiola-derived metabolites is displayed in rigure o.

OPTIMIZING THE MICROBIOME AND MITOCHONDRIA FOR EXERCISE PERFORMANCE

- Diet and lifestyle have big impacts on the health and balance of the microbiome, as well as the health and function of mitochondria
 - Antioxidant rich, plant based, anti-inflammatory diet, devoid or low in processed foods, sugars, additives, etc.
 - Rich in a diverse array of vegetables, low sugar fruits
 - Probiotics, fermented foods, prebiotic fibers, and resistant starches
 - Exercise and movement
 - Daily, moderate activity combined with high-intensity interval training
 - Combination of strength and aerobic training
 - Mitochondrial targeted nutritional supplementation and botanicals
 - Hydration ensure adequate water intake
 - Time spent outdoors in nature, sunlight
 - Stress reducing practices and activities
 - Avoid exposure to toxins

OPTIMIZING EXERCISE AND PERFORMANCE

Optimize Microbiome	Optimize Mitochondrial Function	Support Recovery & Resilience Pathways
 Antioxidant Rich, Plant-based, Organic Diet 	• Exercise	 Adequate Sleep and Rest
	Adequate Sleep	Stress Reduction
 Fermented Foods and Probiotics 	Avoid Toxins	 Adrenal
 Prebiotic Fibers and Resistant Starches 	 Sunlight 	 Inflammation modulation
	Stress Reduction	with Supplements and Botanical Extracts
 Repair Intestinal Permeability 	 Antioxidant Rich, Plant Based Organic Diet 	
 Microbial Balancing 	 Targeted Supplements and 	

Botanical Extracts

• Exercise

Botanical Extracts

CONCLUSIONS

- The interaction of the gut microbiome, mitochondria, and exercise intervention can induce a significant impact on the remodelling of physiological processes for balanced and healthy outcomes.
- Each component has its interdependency on the other, through which they each modulate one another in a dynamic and complex manner.
- Exercise can positively impact the microbial diversity and mitochondrial performance and reduce the risk of many metabolic and non-transferable diseases.
- Understanding of the mechanism of microbial response to exercise can pave the way for the development of novel therapeutic and nutritional strategies to modulate and customize the microbiota, as well as enhance athletic potential and overall health.
- Targeting both the microbiome and the mitochondria with diet, lifestyle, nutritional supplementation and botanicals can lead to improved performance and exercise outcomes.